محوشدگی گرادیان (Vanishing Gradient) چگونه رخ میدهد؟
مشکل محوشدگی گرادیان (Vanishing Gradient) چگونه رخ میدهد؟ در یادگیری ماشین (Machine Learning) زمانیکه شبکهی عصبی را با استفاده از روشهای مبتنی بر گرادیان، مانند انتشار روبهعقب (Backpropagation)، آموزش میدهیم، با مشکل محوشدگی گرادیان مواجه میشویم. این مشکل امکان یادگیری و بهروزرسانی وزنها در لایههای…
پرسپترون (Perceptron) چیست و چگونه کار میکند؟
پرسپترون (Perceptron) چیست؟ مطمئناً اگر به حوزهی هوش مصنوعی (Artificial Intelligence) علاقهمند باشید، بارها عبارت «شبکهی عصبی» را از منابع مختلف شنیدهاید و در ذهنتان این سؤال مطرح شده است که شبکهی عصبی یعنی چه و چگونه کار میکند؟ برای یافتن این سؤال لازم است…
رگرسیون لجستیک (Logistic Regression) چیست و چطور کار میکند؟
رگرسیون لجستیک (Logistic Regression) یکی از الگوریتمهای یادگیری ماشین است. این الگوریتم برای مسائل طبقهبندی (Classification) استفاده میشود که در آن متغیر وابستهی گسسته (Categorical) مطرح میشود. قبل از بررسی رگرسیون لجستیک، بهتر است کمی با یادگیری ماشین و طبقهبندی آشنا شویم. یادگیری ماشین چیست؟…
درک زبان طبیعی (NLU) چیست و چگونه انجام میشود؟
درک زبان طبیعی (NLU) یا بهعبارتی کاملتر Natural Language Understanding زیرشاخهای از پردازش زبان طبیعی (Natural Language Processing) است که تبدیل زبان انسان به فرمت خواندنی و فهمیدنی برای ماشین را دربرمیگیرد. مقدمه آیا تابهحال پیش آمده است که در آیفون (iPhone) از سیری (Siri)…
بینایی کامپیوتری (Computer Vision) چیست و چه کاربردهایی دارد؟
بینایی کامپیوتری (Computer Vision) حوزهای از هوش مصنوعی است که کامپیوترها و سیستمها را قادر میکند اطلاعات معنیداری را از تصاویر دیجیتال و فیلمها و دیگر ورودیهای بصری استخراج کنند و براساس آن اطلاعات، اقداماتی انجام دهند یا توصیههایی ارائه کنند. مقدمه ما انسانها اطلاعات…
با الگوریتم بیز ساده (Naïve Bayes) آشنا شوید!
بیز ساده (Naïve Bayes) یک الگوریتم طبقهبندی ساده اما مؤثر و متداول یادگیری ماشین (Machine Learning) است که در دستهی یادگیری با ناظر (Supervised Learning) جای میگیرد. بیز ساده الگوریتمی احتمالی است که براساس نظریهی بیز برای طبقهبندی (Classification) استفاده میشود. مقدمه فرض کنید در…
الگوریتم ماشین بردار پشتیبان (Support Vector Machine) چیست؟
ماشین بردار پشتیبان (Support Vector Machine) یا بهاختصار SVM یک مدل یادگیری ماشین با ناظر (supervised Learning) است که با توجه به دادههای برچسبدار آموزشی (یادگیری با ناظر)، یک هایپرپلین (Hyperplane) بهینه را ارائه میکند تا دادههای جدید را به دستههای مختلف طبقهبندی کند. یادگیری…
شبکه عصبی LSTM چیست و چگونه کار میکند؟
شبکه عصبی LSTM یا حافظه کوتاهمدت طولانی (Long-Short Term Memory) نوعی خاص از شبکه عصبی بازگشتی (RNN / Recurrent Neural Network) محسوب میشود. پس برای اینکه بتوانیم نحوه کار شبکه LSTM را درک کنیم لازم است با شبکه عصبی RNN آشنا شیم. در این مطلب…
با رگرسیون خطی (Linear Regression) آشنا شوید!
رگرسیون خطی (Linear Regression) روشی آماری برای یافتن رابطهی میان متغیرهای مستقل (Dependent Variables)و وابسته (Independent Variables)است. این روش در یادگیری ماشین با ناظر (Supervised Machine Learning) بسیار کاربرد دارد. مقدمه اخیراً هوش مصنوعی (Artificial Intelligence) بسیار مورد توجه قرار گرفته است و افراد در…
داده کاوی (Data Mining) چیست و چه مراحلی دارد؟
داده کاوی (Data Mining) که بهعنوان کشف دانش در داده (KDD) نیز شناخته میشود فرایند کشف الگوها و دیگر اطلاعات ارزشمند از مجموعهی دادههای بزرگ است. با توجه به پیشرفت تکنولوژی انبار داده (Data Warehousing) و رشد کلانداده (Big Data)، استفاده از تکنیکهای داده کاوی…
شبکه عصبی کانولوشنی (CNN) چیست؟
شبکه عصبی کانولوشنی (CNN) چیست؟ از آنجا که استفاده از شبکههای عصبی تماممتصل (Fully connected) عمیق به قدرت محاسباتی (حافظه) بالایی نیاز دارد تا بتوان تعداد زیادی وزن و ضرب ماتریسی سنگین را مدیریت کرد، نوع جدیدی از شبکههای عصبی بهنام شبکه عصبی کانولوشنی (Convolutional…
با الگوریتم K نزدیک ترین همسایه (K-Nearest Neighbors) آشنا شوید!
الگوریتم K نزدیک ترین همسایه (K-Nearest Neighbors) که بهاختصار به آن KNN نیز گفته میشود یک الگوریتم یادگیری ماشین با ناظر ساده (Supervised Machine Learning) و با پیادهسازی آسان است. این الگوریتم میتواند برای حل مشکلات طبقهبندی (Classification) و رگرسیون (Regression) استفاده شود. نگاهی مختصر…
معماری الکس نت (AlexNet) را بهصورت کامل بشناسید!
الکس نت (AlexNet) یک شبکهی عصبی عمیق است که Alex Krizhevsky، Ilya Sutskever و Geoffrey Hinton در سال 2012 ارائه کردند. این معماری بهمنظور طبقهبندی تصاویر مجموعهدادهی ImageNet در رقابت ILSVRC طراحی شد و توانست رتبهی اول را کسب کند. شبکههای عصبی کانولوشنی و الکسنت…
کم برازش (Underfitting) چیست و راههای جلوگیری از آن کدام است؟
کم برازش (Underfitting) چیست؟ چه زمانی اتفاق میافتد و راههای جلوگیری از آن کدام است؟ بهزبان ساده، کمبرازش هنگامی اتفاق میافتد که مدل یادگیری ماشین بهاندازهی کافی پیچیده نباشد که بتواند روابط میان ویژگیهای یک مجموعه داده و متغیر هدف را بهدرستی تشخیص دهد.مدلی که…
۹ کاربرد یادگیری ماشین در زندگی روزمره را بشناسید!
در این مطلب با ۹ کاربرد یادگیری ماشین در زندگی روزمره آشنا میشوید.
یادگیری نیمه نظارتی (Semi-supervised Learning) چیست؟
یادگیری نیمه نظارتی (Semi-supervised Learning) نوعی یادگیری ماشین (Machine Learning) است که از ترکیب مقدار کمی دادهی برچسبدار و مقدار زیادی دادهی بدون برچسب برای آموزش مدلها استفاده میکند. این رویکرد ترکیبی از یادگیری باناظر (Supervised Learning) که از دادههای آموزشی برچسبدار استفاده میکند و…
تفاوت یادگیری ماشین و یادگیری عمیق چیست؟ آیا این دو یک چیز هستند؟
در این مقاله بهصورت کوتاه یادگیری ماشین (Machine Learning) و یادگیری عمیق (Deep Learning) را معرفی و تفاوتهای آنها با هم را بررسی کردیم. در این بخش خلاصهای از مطالب گفتهشده را آوردهایم:
• یادگیری ماشین چیزی میان علوم کامپیوتر (Computer Science) و آمار (Statistics) است. در آن کامپیوترها این توانایی را پیدا میکنند که بدون اینکه مستقیماً برای کاری برنامهریزی شوند، یاد بگیرند آن را انجام دهند.
• یادگیری عمیق زیرمجموعهی خاصی از یادگیری ماشین است.
• یادگیری عمیق مبتنی بر ساختار لایهای الگوریتمهایی موسوم به شبکهی عصبی مصنوعی است.
• برخلاف یادگیری ماشین، یادگیری عمیق به دادههای زیادی احتیاج دارد، اما برای عملکرد صحیح به مداخلههای انسانی کمی نیاز دارد.
یادگیری عمیق (Deep Learning) چیست؟
یادگیری عمیق (Deep Learning) زیرشاخه یادگیری ماشین (Machine Learning) است. این زیرشاخه در اصل یک شبکهی عصبی (Neural Network) با سه یا چند لایه است. این شبکههای عصبی سعی در شبیهسازی رفتار مغز انسان دارند که به آنها این امکان را میدهد تا با تحلیل…